
Hỏemūı: A semantics for Toaq

Robin Townsend (Dỏaqrēa)

Contents

1 A relational lambda calculus 2
1.1 Syntax . 2
1.2 Constants . 3
1.3 Deductive system . 4

2 Propositions and truth 9

1

1 A relational lambda calculus

Toaq is a rather high-level language, which is appropriate for regular conversation.
However, for our purposes, it would be easier if we had a simpler, more regular
way to represent Toaq sentences. So, in order to talk more rigorously about its
semantics, we’re going to create a formal symbolic language for which we will
provide rules for translating to and from Toaq.

Specifically, we’ll be creating a typed relational lambda calculus, which will
enable us to use higher-order logic while not losing nice classical properties. That
it is ‘typed’ means that all variables and constants will have a type associated
with them, denoting them as one of three kinds of things: an individual (ι), a
proposition (o), or a relation (denoted with parentheses, as in (ι ι o)). That it is
a ‘relational lambda calculus’ means that it has syntax for creating anonymous
relations on the fly with λ. This is a bit different from the classical lambda
calculus, in that ours is deliberately built around relations, rather than functions.
More on the difference later.

As an example, here’s what the Toaq sentence dảqmı̄q gâı zảq sa pỏq hóe da will
look like:

∃j(ι). ∃h(ι). Jỉ j ∧Hỏe h ∧ Rủaq j λro. r = λ.

Dảqmı̄q λdo. d = λ.

∃p(ι). Pỏq p ∧
(
λa(ι) b(ι). Gảı a λgo. g = λ. Zảq b

)
p h

(1)

1.1 Syntax

So. . . let’s create a language! We’re going to need to lay down the syntax and
typing rules.

First of all, we have a set of variables. These are single lowercase letters with
or without subscripts: {a, a0, a1, . . . , b, b0, b1, . . . , z, z0, z1, . . .}. We also have
some constants, represented by capitalized Toaq words with type annotations to
disambiguate them when needed, such as Hỏe, Chỉe, Jẻo

((o))
, and Jẻo

((ι) ((ι)))
.

Variables and constants form terms. Terms can have the following types:

� ι, the type of individuals

� o, the type of propositions

� (τ1 . . . τn), the type of n-ary relations between types τ1, . . . , τn

From these we build formulas, which are defined by the following rules (listed in
order of precedence):

� Atoms: Words known as ‘nullary predicates’, such as Hỏejēaq and Tảqjȳ,
are formulas by themselves.

2

� Application: If r is a term of type (τ1 . . . τn) and t1, . . . , tn are terms of
types τ1, . . . , τn, then r t1 . . . tn is a formula.

� Equality : If t1 and t2 are terms of type τ , t1 = t2 is a formula.

� Negation: If φ is a formula, ¬φ is a formula.

� Modality : If � is a modal operator1 and φ is a formula, �φ is a formula.

� Conjunction: If φ and ψ are formulas, φ ∧ ψ is a formula.

� Disjunction: If φ and ψ are formulas, φ ∨ ψ is a formula.

� Implication: If φ and ψ are formulas, φ→ ψ is a formula.

� Bi-implication: If φ and ψ are formulas, φ↔ ψ is a formula.

� Existential quantification: If v is a variable, τ is a type, and φ is a formula
in which v has type τ , then ∃vτ . φ is a formula.

� Universal quantification: If v is a variable, τ is a type, and φ is a formula
in which v has type τ , then ∀vτ . φ is a formula.

Precedence can of course be overridden with parentheses. By convention, →
associates to the right, while all other connectives associate to the left.

Additionally, we have a couple of ways to create a term out of a formula by
means of abstraction:

� Proposition abstraction: If φ is a formula, λ. φ is a term of type o.

� Relation abstraction: If v1, . . . , vn are variables, τ1, . . . , τn are types, and φ
is a formula in which v1, . . . , vn have types τ1, . . . , τn, then λvτ11 . . . vτnn . φ
is a term of type (τ1 . . . τn).

And that’s all the syntax we need! We have stated the typing rules here only in
words instead of in the traditional inference rule style, but hopefully it should
be obvious how they work.

1.2 Constants

Earlier we mentioned a few examples of the constants present in this language,
which generally speaking represent Toaq predicates. However, since Toaq’s
predicates are often overloaded in their arity and type, we need to be more
specific about how these are translated into our set of relation constants.

In the dictionary, predicates are given definitions for specific arities. However, as
we know, any binary predicate will also have unary and nullary forms available,
even if they are not explicitly stated. Normally these follow a predictable pattern
of existential closure over the missing arguments—for example, kủeq corresponds
to lủ kủeq hóa sa when used as a unary predicate, and kủeq sa sa when used as
a nullary predicate. But other predicates, such as dủ, behave entirely differently

1We’ll introduce the modal operators of this language later. For now, just know they exist.

3

at lower arities, having extra definitions with different argument structures that
don’t simply follow the existential closure pattern. We call these the explicit
arities of a predicate, while the implicit arities are those than can be derived
from an explicit, higher arity simply via existential closure.

A few examples:

� bỉa has an explicit arity 2, and implicit arities 1 and 0.

� dủ has explicit arities 2 and 1, and an implicit arity 0.

� hỏejēaq has an explicit arity 0.

� rủqshūa has explicit arities 2 and 0, and an implicit arity 1.2

In addition to arity information, we need to know what types these predicates
may accept as arguments. Currently no such comprehensive list of type signatures
is available, but it would be fairly straightforward to compile one, so we can
pretend that agreed-upon type signatures exist. Note that some predicates,
such as binary jẻo, are in fact generic over the types of their arguments, giving
infinitely many possible type signatures: ((ι) ((ι))), ((o) ((o))), (((ι o)) (((ι o)))),
. . . . We will have separate constants for each of these instances.

So, for every predicate in the dictionary, each of its explicit arities are assigned
a relation constant, with generically-typed predicates receiving an infinite series
of constants. If a predicate has only a single explicit arity with a single possible
type, then its type signature is ommitted; otherwise, type signatures are added
as a superscript to distinguish the different versions of an overloaded predicate.
For predicates with an explicit arity of 0, they are added to the set of atomic
formulas.

One more thing we must be careful of is that there are some Toaq predicates
which aren’t actually relations at all, such as hỏa, pỏı, and pẻ. These ‘pseudo-
predicates’ are simply syntactic sugars that happen to have the grammar of
predicates, and as such we will not provide relation constants for them—they
will instead have special translation rules.

1.3 Deductive system

Now we come to the core of this language’s purpose. In order to actually give
meaning to the syntax we have established, we need to provide a deductive
system as a way of obtaining proofs. From a proof-theoretic perspective, this is
exactly what will determine our language’s semantics.

We will be using a system of natural deduction, which is a common way to
formulate proofs. We prove things by starting out with no assumptions, then

20 is an explicit arity of rủqshūa, because while its binary and unary forms can talk about
rain anywhere in the world, its nullary form supposedly only means “it is raining here”. This is
not the same as “something rains onto somewhere”.

4

stating any relevant axioms and using inference rules to manipulate them and
arrive at a conclusion. Here is an example of an inference rule:

φ ψ . . .
foo

χ

What this rule tells us is that, given the premises above the line (φ, ψ, etc.),
we may infer the conclusion below the line (χ). The bit to the right of the line
(foo) is simply the rule’s name. If a rule requires no premises, then it is an
axiom—something which we may assert in any context.

We will now give the inference rules necessary to define our language’s logical
connectives. These come in two varieties: introduction and elimination rules.
These show how to introduce and eliminate the use of an operator, respectively.

First, the rules for implication:

φ
...
ψ

→intro
φ→ ψ

φ→ ψ φ
→elim

ψ

The elimination rule should be familiar—it is simply modus ponens. The intro-
duction rule, on the other hand, is our equivalent of the deduction theorem. It
says that if assuming φ allows us to derive ψ, we may conclude φ→ ψ. The bit
above the line can be thought of as a sub-proof in which we are allowed to make
such an assumption, rather than a normal premise.

The rules for conjunction, disjunction, and bi-implication are straightforward.
Note that each of them come with multiple introduction or elimination rules,
since connectives represent multiple possibilities.

φ ψ
∧intro

φ ∧ ψ
φ ∧ ψ

∧elim 1
φ

φ ∧ ψ
∧elim 2

ψ

φ
∨intro 1

φ ∨ ψ
ψ

∨intro 2
φ ∨ ψ

φ ∨ ψ

φ
...
χ

ψ
...
χ

∨elimχ

φ→ ψ ψ → φ
↔intro

φ↔ ψ

φ↔ ψ
↔elim 1

φ→ ψ

φ↔ ψ
↔elim 2

ψ → φ

Now for negation:

φ
...

ψ ∧ ¬ψ
¬intro¬φ

¬φ
...

ψ ∧ ¬ψ
¬elim

φ

The introduction rule tells us that in order to prove the negation of φ, we first
assume φ, and then show how this leads to a contradiction (ψ ∧ ¬ψ). This gives

5

us the law of non-contradiction for free:

Rule. NC
¬(φ ∧ ¬φ)

Derivation.
φ ∧ ¬φ

¬intro
¬(φ ∧ ¬φ)

The elimination rule is also rather important, as it is what makes our system
classical rather than intuitionistic. From it, we can prove ex falso quodlibet,
double negation elimination, and the law of excluded middle.

Rule.
φ ∧ ¬φ

EFQ
ψ

Derivation.
φ ∧ ¬φ

¬elim
ψ

Rule.
¬¬φ

¬¬elim
φ

Derivation.

¬φ ¬¬φ
∧intro¬φ ∧ ¬¬φ
¬elim

φ

Rule. XM
φ ∨ ¬φ

Derivation.

¬φ
∨intro 2

φ ∨ ¬φ ¬(φ ∨ ¬φ)
∧intro

(φ ∨ ¬φ) ∧ ¬(φ ∨ ¬φ)
¬elim

φ

φ
∨intro 1

φ ∨ ¬φ ¬(φ ∨ ¬φ)
∧intro

(φ ∨ ¬φ) ∧ ¬(φ ∨ ¬φ)
¬intro¬φ

∧intro
φ ∧ ¬φ

¬elim
φ ∨ ¬φ

So far, these have all been rules of propositional logic—that is, not involving
terms. To work with terms, we need to provide rules for quantifiers, which gets
a little tricky. First, universal quantification:

φ
∀intro∀vτ . φ

∀vτ . φ
∀elim

φt/v

6

The introduction rule is fairly straightforward—given φ (which may contain
v as a free variable), we can state that φ holds for all values of type τ . For
the elimination rule, φt/v is the same as φ, except with some term t of type
τ substituted for all free occurrences of v. Thus, we may go from a general
statement to a specific one, or simply free v from its binding.

Now for existential quantification:

φC/v
∃intro∃vτ . φ

∃vτ . φ

φC/v
...
ψ

∃elim
ψ

For both rules, φC/v is the same as φ, except with some constant C substituted
for all free occurrences of v. In the elimination rule, C must be a new constant
not already in scope—one that we make up simply for the purpose of argument
within the sub-proof. Thus, this constant must not occur in our conclusion ψ.

It follows that these quantifiers are duals:

Rule.
∀vτ . φ

∀dual¬∃vτ . ¬φ

Derivation.
∃vτ . ¬φ

∀vτ . φ
∀elim

φC/v ¬φC/v
∧intro

φC/v ∧ ¬φC/v
EFQ

ψ ∧ ¬ψ
∃elim

ψ ∧ ¬ψ
¬intro¬∃vτ . ¬φ

Rule.
∃vτ . φ

∃dual¬∀vτ . ¬φ

Derivation.
∃vτ . φ

φC/v

∀vτ . ¬φ
∀elim

¬φC/v
∧intro

φC/v ∧ ¬φC/v
EFQ

ψ ∧ ¬ψ
∃elim

ψ ∧ ¬ψ
¬intro¬∀vτ . ¬φ

Another thing we will want to do with terms is the substitution of equals. Here
are the rules for equality, which tell us how to do just that:

=intro
t = t

t1 = t2 φt1/v
=elim

φt2/v

7

The introduction rule says that equality is reflexive. Any equivalence relation
should also be symmetric and transitive, which we can indeed prove from these
rules.

Rule.
t1 = t2

=sym
t2 = t1

Derivation. t1 = t2
=intro

t1 = t1
=elim

t2 = t1

Rule.
t1 = t2 t2 = t3

=trans
t1 = t3

Derivation.
t1 = t2

=sym
t2 = t1 t2 = t3

=elim
t1 = t3

Lastly, we define relation abstraction. Here we use a double line as a shorthand to
indicate that the rule is reversible, giving both the introduction and elimination
rules in a condensed form.

φt1/v1 ... tn/vn
λintel

(λvτ11 . . . vτnn . φ) t1 . . . tn

Going in the introduction direction, the rule states that given any formula
containing the terms t1, . . . , tn, we may abstract the relation between them
into a λ-term applied to the original arguments. The elimination direction,
which substitutes the terms back in, is the equivalent of β-reduction from the
classical lambda calculus. We can also rename λ-bound variables by applying
α-conversion, as in the classical lambda calculus.

Rule.
(λvτ11 . . . vτnn . φ) t1 . . . tn

λα-conv(
λwτ11 . . . wτnn . φ

w1/v1 ... wn/vn
)
t1 . . . tn

Derivation.

(λvτ11 . . . vτnn . φ) t1 . . . tn
λelim

φt1/v1 ... tn/vn
λintro(

λwτ11 . . . wτnn . φ
w1/v1 ... wn/vn

)
t1 . . . tn

These inference rules cover everything but modality, proposition abstraction,
and the behaviors of constants. Since those topics take longer to cover, we’ll be
amending our deductive system with rules for them as we go along.

8

2 Propositions and truth

True λ. ¬φ
Falseintel

False λ. φ

True λ. φ True λ. ψ
True∧ intro

True λ. φ ∧ ψ
True λ. φ ∧ ψ

True∧ elim 1
True λ. φ

True λ. φ ∧ ψ
True∧ elim 2

True λ. ψ

False λ. φ
False∧ intro 1

False λ. φ ∧ ψ
False λ. ψ

False∧ intro 2
False λ. φ ∧ ψ

True λ. φ→ ψ True λ. φ
True→ elim

True λ. ψ

∃vτ . False λ. φ
False∀ intro

False λ. ∀vτ . ψ
True t False t TrueEFQ

φ

...
φ

Trueintro
True λ. φ

...
True λ. φ

Trueelim
φ

∀vo. t v → True v
Jẻo

((o))

intel

Jẻo
((o))

t

∀vτ1 . ∀v
(τ)
2 . t1 v1 → t2 v2 → v2 v1

Jẻo
((τ) ((τ)))

intel

Jẻo
((τ) ((τ)))

t1 t2

∀vo. t v → False v
Bủ

((o))

intel

Bủ
((o))

t

∀vτ1 . ∀v
(τ)
2 . t1 v1 → t2 v2 → ¬v2 v1

Bủ
((τ) ((τ)))

intel

Bủ
((τ) ((τ)))

t1 t2

9

