Semantics

From The Toaq Wiki
Revision as of 22:06, 12 February 2023 by Mỉ Mỉao ga Nhäqpy (talk | contribs) (use the formula thingy)

Toaq is a loglang, which means that from any sentence, we can unambiguously derive its meaning in logic notation. Syntax describes how this process works; semantics describes how to interpret the result.

The refgram tells you that 󱚼󱚲󱛍󱚹 󱚵󱚲󱛍󱛃 󱚺󱛊󱚺 󱛘󱚷󱚹󱛂󱚻󱚺󱛙 󱚵󱛌󱚹󱛍󱚴 󱛘󱚵󱛊󱚺󱛎󱛃󱛄󱚲󱛍󱚺󱛙 Luı nuo sá tıqra nîe náokua translates to . The reality is that this isn't "just" logic notation: it's a very specific notation that has been purpose-built for describing natural language semantics, and this article will help you understand the core concepts behind it.

Models

To help us reason about meaning more directly, mathematicians have come up with the idea of a model: a mathematical object that tells us exactly how to interpret statements in a given formal language. In its most basic form, a model has three parts:

  • A signature, which is the set of all words and symbols found in the language, along with their syntactic properties.
  • A domain, which is the set of all objects, functions, relations, etc. that the language is capable of representing.
  • An interpretation, which is a function defining which symbols correspond to which elements of the domain.

For example, consider the language of basic arithmetic. A model for this language might look like this:

Arithmetic model.svg

As it turns out, Toaq is a formal language too, which means we can reason about it using models. Now, being a human language, Toaq's semantics are quite a bit more complicated than that of arithmetic, but luckily for us, models are a pretty flexible concept, and we can extend them with extra features as we need them.

In its most basic form, a model for Toaq might look something like this:

Toaq model.svg

As you can see, this model holds not just concepts like the meaning of "muao", but also context-sensitive information, such as what "káto" and "jí" refer to.

Say that you have an idea of what the world is like—maybe you have a mental model in your head, or maybe you have a database to look things up in. If your knowledge is complete enough, then that model lets you answer a question, or tell whether what someone said is true, by interpreting their words and then "looking up" the answer. But more often than not, people are working with incomplete knowledge. In this case, if someone tells you something, a model lets you interpret their words and then work backwards from the meaning to figure out what must be true about the world.

Semantic calculus

Events

Worlds

Presuppositions

Propositions