Jump to content

Semantics: Difference between revisions

2 bytes added ,  22:02, 18 July 2023
Use a consistent syntax for restricted quantification
(brismu is being worked on again?? update the link)
(Use a consistent syntax for restricted quantification)
Line 69: Line 69:
** <math>\forall</math> for "every"
** <math>\forall</math> for "every"


For example, we might write the interpretation of "indeed, every person is living or dead" as <math>\dagger \forall a\ \text{poq}(a).\ \text{mie}(a) \lor \text{muaq}(a)</math>.
For example, we might write the interpretation of "indeed, every person is living or dead" as <math>\dagger \forall a : \text{poq}(a).\ \text{mie}(a) \lor \text{muaq}(a)</math>.


== Events ==
== Events ==
Line 102: Line 102:
We use the function representation whenever a property in Toaq is spelled out explicitly with the complementizer {{Derani|󱚼󱛋󱚺|lä}}. For example, the property in {{Derani|󱚼󱚴󱛍󱛃 󱚾󱛊󱚹 󱛔 󱚼󱛋󱚺 󱚵󱚲󱛍󱛃 󱚾󱛊󱚺 󱛚|Leo jí, lä nuo já}} would be interpreted as <math>\lambda a.\ \lambda w.\ \exists e.\ \tau(e) \subseteq \text{t} \land \text{nuo}_w(a)(e)</math>, a function of type <math>\left\langle \text{e}, \left\langle \text{s}, \text{t} \right\rangle \right\rangle</math>. And for a property with two blanks, you would use a function of type <math>\left\langle \text{e}, \left\langle \text{e}, \left\langle \text{s}, \text{t} \right\rangle \right\rangle \right\rangle</math>.
We use the function representation whenever a property in Toaq is spelled out explicitly with the complementizer {{Derani|󱚼󱛋󱚺|lä}}. For example, the property in {{Derani|󱚼󱚴󱛍󱛃 󱚾󱛊󱚹 󱛔 󱚼󱛋󱚺 󱚵󱚲󱛍󱛃 󱚾󱛊󱚺 󱛚|Leo jí, lä nuo já}} would be interpreted as <math>\lambda a.\ \lambda w.\ \exists e.\ \tau(e) \subseteq \text{t} \land \text{nuo}_w(a)(e)</math>, a function of type <math>\left\langle \text{e}, \left\langle \text{s}, \text{t} \right\rangle \right\rangle</math>. And for a property with two blanks, you would use a function of type <math>\left\langle \text{e}, \left\langle \text{e}, \left\langle \text{s}, \text{t} \right\rangle \right\rangle \right\rangle</math>.


But whenever a Toaq variable is used as a property, we need to fall back to the properties as individuals approach, using <math>\text{iq}</math> (type <math>\left\langle \text{e}, \left\langle \text{e}, \left\langle \text{s}, \text{t} \right\rangle \right\rangle \right\rangle</math>) or <math>\text{cuoi}</math> (type <math>\left\langle \text{e}, \left\langle \text{e}, \left\langle \text{e}, \left\langle \text{s}, \text{t} \right\rangle \right\rangle \right\rangle \right\rangle</math>) to access its semantic content. So, the correct interpretation of {{Derani|󱚿󱚴 󱚽󱛊󱚺󱛎󱛃 󱚺󱛊󱚺 󱛘󱚾󱚲󱛍󱚺󱛙|Che nháo sá jua}} would be <math>\exists a\ \text{jua}(a).\ \exists e.\ \tau(e) \subseteq \text{t} \land \text{che}(\text{nh}\mathrm{\acute{a}}\text{o}, \lambda b.\ \text{iq}(b, a))(e) </math>.
But whenever a Toaq variable is used as a property, we need to fall back to the properties as individuals approach, using <math>\text{iq}</math> (type <math>\left\langle \text{e}, \left\langle \text{e}, \left\langle \text{s}, \text{t} \right\rangle \right\rangle \right\rangle</math>) or <math>\text{cuoi}</math> (type <math>\left\langle \text{e}, \left\langle \text{e}, \left\langle \text{e}, \left\langle \text{s}, \text{t} \right\rangle \right\rangle \right\rangle \right\rangle</math>) to access its semantic content. So, the correct interpretation of {{Derani|󱚿󱚴 󱚽󱛊󱚺󱛎󱛃 󱚺󱛊󱚺 󱛘󱚾󱚲󱛍󱚺󱛙|Che nháo sá jua}} would be <math>\exists a : \text{jua}(a).\ \exists e.\ \tau(e) \subseteq \text{t} \land \text{che}(\text{nh}\mathrm{\acute{a}}\text{o}, \lambda b.\ \text{iq}(b, a))(e) </math>.


TODO: point out that questions are isomorphic to properties
TODO: point out that questions are isomorphic to properties