685
edits
(add a possibly superfluous table but hey rigor is rigor) |
m (show how it looks without nonagents) |
||
Line 18: | Line 18: | ||
# Optionally, a final dot announces the rest of the formula <math>P(e)</math> in which <math>e</math> is bound. | # Optionally, a final dot announces the rest of the formula <math>P(e)</math> in which <math>e</math> is bound. | ||
There are | There are some variants of the notation, depending on the presence of an agent, of non-agent participants, and of a subsequent statement <math>P(e)</math>: | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 32: | Line 32: | ||
|- | |- | ||
| <math>\exists \mathop{\text{hao}}\limits_{< \text{t}}{}^{e}_{w}\left(\text{x}; \text{y}, \text{z}\right). P(e)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{hao}_w(\text{y},\text{z})(e) \wedge \text{AGENT}(e)(w) = \text{x} \wedge P(e)</math> | | <math>\exists \mathop{\text{hao}}\limits_{< \text{t}}{}^{e}_{w}\left(\text{x}; \text{y}, \text{z}\right). P(e)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{hao}_w(\text{y},\text{z})(e) \wedge \text{AGENT}(e)(w) = \text{x} \wedge P(e)</math> | ||
|- | |||
| <math>\exists \mathop{\text{ruqshua}}\limits_{< \text{t}}{}^{e}_{w}</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{ruqshua}_w(e)</math> | |||
|- | |||
| <math>\exists \mathop{\text{ruqshua}}\limits_{< \text{t}}{}^{e}_{w}. P(e)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{ruqshua}_w(e) \wedge P(e)</math> | |||
|- | |||
| <math>\exists \mathop{\text{marao}}\limits_{< \text{t}}{}^{e}_{w}(\text{jı};)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{marao}_w(e) \wedge \text{AGENT}(e)(w) = \text{jı}</math> | |||
|- | |||
| <math>\exists \mathop{\text{marao}}\limits_{< \text{t}}{}^{e}_{w}(\text{jı};). P(e)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{marao}_w(e) \wedge \text{AGENT}(e)(w) = \text{jı} \wedge P(e)</math> | |||
|} | |} | ||
==Example== | ==Example== |