685
edits
(initial article) |
(add a possibly superfluous table but hey rigor is rigor) |
||
Line 17: | Line 17: | ||
# The participants are listed in parentheses. If there is an agent, it's separated from the non-agent participants by a semicolon. | # The participants are listed in parentheses. If there is an agent, it's separated from the non-agent participants by a semicolon. | ||
# Optionally, a final dot announces the rest of the formula <math>P(e)</math> in which <math>e</math> is bound. | # Optionally, a final dot announces the rest of the formula <math>P(e)</math> in which <math>e</math> is bound. | ||
There are essentially four variants of the notation, depending on the presence of an agent and of a subsequent statement <math>P(e)</math>: | |||
{| class="wikitable" | |||
|+ Compact event notation | |||
|- | |||
! Compact notation !! Expanded notation | |||
|- | |||
| <math>\exists \mathop{\text{hao}}\limits_{< \text{t}}{}^{e}_{w}\left( \text{y}, \text{z}\right)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{hao}_w(\text{y},\text{z})(e) </math> | |||
|- | |||
| <math>\exists \mathop{\text{hao}}\limits_{< \text{t}}{}^{e}_{w}\left( \text{y}, \text{z}\right). P(e)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{hao}_w(\text{y},\text{z})(e) \wedge P(e)</math> | |||
|- | |||
| <math>\exists \mathop{\text{hao}}\limits_{< \text{t}}{}^{e}_{w}\left(\text{x}; \text{y}, \text{z}\right)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{hao}_w(\text{y},\text{z})(e) \wedge \text{AGENT}(e)(w) = \text{x} </math> | |||
|- | |||
| <math>\exists \mathop{\text{hao}}\limits_{< \text{t}}{}^{e}_{w}\left(\text{x}; \text{y}, \text{z}\right). P(e)</math> || <math>\exists e. \tau(e) < \text{t} \wedge \text{hao}_w(\text{y},\text{z})(e) \wedge \text{AGENT}(e)(w) = \text{x} \wedge P(e)</math> | |||
|} | |||
==Example== | ==Example== |